Electronic structure of superconducting KC8 and nonsuperconducting LiC6 graphite intercalation compounds: evidence for a graphene-sheet-driven superconducting state.
نویسندگان
چکیده
We have performed photoemission studies of the electronic structure in LiC(6) and KC(8), a nonsuperconducting and a superconducting graphite intercalation compound, respectively. We have found that the charge transfer from the intercalant layers to graphene layers is larger in KC(8) than in LiC(6), opposite of what might be expected from their chemical composition. We have also measured the strength of the electron-phonon interaction on the graphene-derived Fermi surface to carbon derived phonons in both materials and found that it follows a universal trend where the coupling strength and superconductivity monotonically increase with the filling of graphene π(*) states. This correlation suggests that both graphene-derived electrons and graphene-derived phonons are crucial for superconductivity in graphite intercalation compounds.
منابع مشابه
Anisotropic electron-phonon coupling and dynamical nesting on the graphene sheets in superconducting CaC6 using angle-resolved photoemission spectroscopy.
We present the first angle-resolved photoemission studies of electronic structure in CaC6, a superconducting graphite intercalation compound with T_{c}=11.6 K. We find that, contrary to theoretical models, the electron-phonon coupling on the graphene-derived Fermi sheets with high-frequency graphene-derived phonons is surprisingly strong and anisotropic. The shape of the Fermi surface is found ...
متن کاملVan der Waals density functional study of the energetics of alkali metal intercalation in graphite
We report on the energetics of intercalation of lithium, sodium and potassium in graphite by density functional theory using recently developed van der Waals (vdW) density functionals. First stage intercalation compounds are well described by conventional functionals like GGA, but van der Waals functionals are crucial for higher stage intercalation compounds and graphite, where van der Waals in...
متن کاملCa intercalated bilayer graphene as a thinnest limit of superconducting C6Ca.
Success in isolating a 2D graphene sheet from bulky graphite has triggered intensive studies of its physical properties as well as its application in devices. Graphite intercalation compounds (GICs) have provided a platform of exotic quantum phenomena such as superconductivity, but it is unclear whether such intercalation is feasible in the thinnest 2D limit (i.e., bilayer graphene). Here we re...
متن کاملSuperconducting graphene sheets in CaC6 enabled by phonon-mediated interband interactions
There is a great deal of fundamental and practical interest in the possibility of inducing superconductivity in a monolayer of graphene. But while bulk graphite can be made to superconduct when certain metal atoms are intercalated between its graphene sheets, the same has not been achieved in a single layer. Moreover, there is a considerable debate about the precise mechanism of superconductivi...
متن کاملRole of Nitrogen Doped Graphene for Improved High Capacity Potassium Ion Battery Anodes.
Potassium is an earth abundant alternative to lithium for rechargeable batteries, but a critical limitation in potassium ion battery anodes is the low capacity of KC8 graphite intercalation compounds in comparison to conventional LiC6. Here we demonstrate that nitrogen doping of few-layered graphene can increase the storage capacity of potassium from a theoretical maximum of 278 mAh/g in graphi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 106 18 شماره
صفحات -
تاریخ انتشار 2011